Tensorflow Deep MNIST:资源枯竭:分配具有形状的张量时为OOM [10000,32,28,28]
python
tensorflow
6
0

这是我正在运行的示例MNIST代码:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

import tensorflow as tf
sess = tf.InteractiveSession()

x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])

W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x,W) + b)

def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)


def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')


W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])


x_image = tf.reshape(x, [-1,28,28,1])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

init = tf.initialize_all_variables()
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC'
with tf.Session(config = config) as s:
  sess.run(init)

for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
    print("step %d, training accuracy %g"%(i, train_accuracy))
  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

我正在使用的GPU是: GeForce GTX 750 Ti

错误:

...
...
...
step 19900, training accuracy 1
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (256):   Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (512):   Total Chunks: 1, Chunks in use: 0 768B allocated for chunks. 1.20MiB client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (1024):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (2048):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (4096):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (8192):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (16384):     Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (32768):     Total Chunks: 1, Chunks in use: 0 36.8KiB allocated for chunks. 4.79MiB client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (65536):     Total Chunks: 1, Chunks in use: 0 78.5KiB allocated for chunks. 4.79MiB client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (131072):    Total Chunks: 1, Chunks in use: 0 200.0KiB allocated for chunks. 153.1KiB client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (262144):    Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (524288):    Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (1048576):   Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (2097152):   Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (4194304):   Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (8388608):   Total Chunks: 1, Chunks in use: 0 11.86MiB allocated for chunks. 390.6KiB client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (16777216):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (33554432):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (67108864):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (134217728):     Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (268435456):     Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:656] Bin for 957.03MiB was 256.00MiB, Chunk State: 
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a40000 of size 1280
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a40500 of size 1280
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a40a00 of size 31488
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a48500 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a48600 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a48700 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a48800 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a48900 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a48a00 of size 4096
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a49a00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a49b00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a49c00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a49d00 of size 3328
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a4aa00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a4ab00 of size 204800
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a7cb00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a7cc00 of size 12845056
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026bcc00 of size 4096
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026bdc00 of size 40960
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026c7c00 of size 31488
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cf700 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cf800 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cf900 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cfa00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cfb00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cfc00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cfd00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cfe00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cff00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026d0000 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026d0100 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026d0500 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026d0600 of size 3328
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026d1300 of size 40960
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026db300 of size 80128
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x602702600 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x602734700 of size 204800
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x603342700 of size 4096
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x603343700 of size 3328
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334d700 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334d800 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334d900 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334da00 of size 3328
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334e700 of size 3328
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334f400 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334f500 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334f600 of size 204800
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x603381600 of size 204800
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6033b3600 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6033b3700 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6033b3800 of size 12845056
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x603ff3800 of size 12845056
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x604c33800 of size 4096
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x604c34800 of size 4096
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x604c35800 of size 40960
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x604c3f800 of size 40960
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x604c49800 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x604c49900 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x604c49a00 of size 13053184
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6058bc700 of size 31360000
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6076a4b00 of size 1801385216
I tensorflow/core/common_runtime/bfc_allocator.cc:683] Free at 0x6026d0200 of size 768
I tensorflow/core/common_runtime/bfc_allocator.cc:683] Free at 0x6026eec00 of size 80384
I tensorflow/core/common_runtime/bfc_allocator.cc:683] Free at 0x602702700 of size 204800
I tensorflow/core/common_runtime/bfc_allocator.cc:683] Free at 0x602766700 of size 12435456
I tensorflow/core/common_runtime/bfc_allocator.cc:683] Free at 0x603344400 of size 37632
I tensorflow/core/common_runtime/bfc_allocator.cc:689]      Summary of in-use Chunks by size: 
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 32 Chunks of size 256 totalling 8.0KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 2 Chunks of size 1280 totalling 2.5KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 5 Chunks of size 3328 totalling 16.2KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 5 Chunks of size 4096 totalling 20.0KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 2 Chunks of size 31488 totalling 61.5KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 4 Chunks of size 40960 totalling 160.0KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 1 Chunks of size 80128 totalling 78.2KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 4 Chunks of size 204800 totalling 800.0KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 3 Chunks of size 12845056 totalling 36.75MiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 1 Chunks of size 13053184 totalling 12.45MiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 1 Chunks of size 31360000 totalling 29.91MiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 1 Chunks of size 1801385216 totalling 1.68GiB
I tensorflow/core/common_runtime/bfc_allocator.cc:696] Sum Total of in-use chunks: 1.76GiB
I tensorflow/core/common_runtime/bfc_allocator.cc:698] Stats: 
Limit:                  1898266624
InUse:                  1885507584
MaxInUse:               1885907712
NumAllocs:                 2387902
MaxAllocSize:           1801385216

W tensorflow/core/common_runtime/bfc_allocator.cc:270] **********************************************************xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
W tensorflow/core/common_runtime/bfc_allocator.cc:271] Ran out of memory trying to allocate 957.03MiB.  See logs for memory state.
W tensorflow/core/framework/op_kernel.cc:968] Resource exhausted: OOM when allocating tensor with shape[10000,32,28,28]
Traceback (most recent call last):
  File "trainer_deepMnist.py", line 109, in <module>
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 559, in eval
    return _eval_using_default_session(self, feed_dict, self.graph, session)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 3648, in _eval_using_default_session
    return session.run(tensors, feed_dict)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 710, in run
    run_metadata_ptr)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 908, in _run
    feed_dict_string, options, run_metadata)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 958, in _do_run
    target_list, options, run_metadata)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 978, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors.ResourceExhaustedError: OOM when allocating tensor with shape[10000,32,28,28]
     [[Node: Conv2D = Conv2D[T=DT_FLOAT, data_format="NHWC", padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/gpu:0"](Reshape, Variable_2/read)]]
Caused by op u'Conv2D', defined at:
  File "trainer_deepMnist.py", line 61, in <module>
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
  File "trainer_deepMnist.py", line 46, in conv2d
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 394, in conv2d
    data_format=data_format, name=name)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 703, in apply_op
    op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2320, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1239, in __init__
    self._traceback = _extract_stack()

我读了一些与同一个问题相关的github问题( 在这里这里 ),但是不明白我应该如何更改代码来解决这个问题。

参考资料:
Stack Overflow
收藏
评论
共 2 个回答
高赞 时间 活跃

这是我解决此问题的方法:错误表示在准确性评估期间GPU内存不足。因此,它需要一个较小的数据集,可以通过批量使用数据来实现。因此,与其在整个测试数据集上运行代码,不如在本文中提到的那样需要分批运行: 使用TensorFlow时如何分批读取数据

因此,为了对测试数据集进行准确性评估,而不是以下位置:

print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

可以使用:

for i in xrange(10):
    testSet = mnist.test.next_batch(50)
    print("test accuracy %g"%accuracy.eval(feed_dict={ x: testSet[0], y_: testSet[1], keep_prob: 1.0}))

当我运行1000 epochs进行training并使用10 batchesbatch_size = 50进行accuracy evaluation ,我得到以下结果:

step 0, training accuracy 0.04
step 100, training accuracy 0.88
step 200, training accuracy 0.9
step 300, training accuracy 0.88
step 400, training accuracy 0.94
step 500, training accuracy 0.96
step 600, training accuracy 0.94
step 700, training accuracy 0.96
step 800, training accuracy 0.9
step 900, training accuracy 1
test accuracy 1
test accuracy 0.92
test accuracy 1
test accuracy 1
test accuracy 0.94
test accuracy 0.96
test accuracy 0.92
test accuracy 0.96
test accuracy 0.92
test accuracy 0.94
收藏
评论

补充Abhijay的答案,您可以轻松获得整个测试迷你批的平均准确度

accuracy_sum = tf.reduce_sum(tf.cast(correct_prediction, tf.float32))
good = 0
total = 0
for i in xrange(10):
    testSet = mnist.test.next_batch(50)
    good += accuracy_sum.eval(feed_dict={ x: testSet[0], y_: testSet[1], keep_prob: 1.0})
    total += testSet[0].shape[0]
print("test accuracy %g"%(good/total))
收藏
评论
新手导航
  • 社区规范
  • 提出问题
  • 进行投票
  • 个人资料
  • 优化问题
  • 回答问题

关于我们

常见问题

内容许可

联系我们

@2020 AskGo
京ICP备20001863号