numpy将分类字符串数组转换为整数数组
machine-learning
numpy
python
6
0

我正在尝试将分类变量的字符串数组转换为分类变量的整数数组。

例如

import numpy as np
a = np.array( ['a', 'b', 'c', 'a', 'b', 'c'])
print a.dtype
>>> |S1

b = np.unique(a)
print b
>>>  ['a' 'b' 'c']

c = a.desired_function(b)
print c, c.dtype
>>> [1,2,3,1,2,3] int32

我意识到可以通过循环完成此操作,但我想有一种更简单的方法。谢谢。

参考资料:
Stack Overflow
收藏
评论
共 5 个回答
高赞 时间 活跃

np.unique有一些可选的返回值

return_inverse给出整数编码,我经常使用

>>> b, c = np.unique(a, return_inverse=True)
>>> b
array(['a', 'b', 'c'], 
      dtype='|S1')
>>> c
array([0, 1, 2, 0, 1, 2])
>>> c+1
array([1, 2, 3, 1, 2, 3])

它可以用来从唯一性重建原始数组

>>> b[c]
array(['a', 'b', 'c', 'a', 'b', 'c'], 
      dtype='|S1')
>>> (b[c] == a).all()
True
收藏
评论

另一种方法是使用Pandas factorize将项目映射到数字:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: a = np.array(['a', 'b', 'c', 'a', 'b', 'c'])
In [4]: a_enc = pd.factorize(a)
In [5]: a_enc[0]
Out[5]: array([0, 1, 2, 0, 1, 2])
In [6]: a_enc[1]
Out[6]: array(['a', 'b', 'c'], dtype=object)
收藏
评论

另一种选择是使用分类大熊猫系列:

>>> import pandas as pd
>>> pd.Series(['a', 'b', 'c', 'a', 'b', 'c'], dtype="category").cat.codes.values

array([0, 1, 2, 0, 1, 2], dtype=int8)
收藏
评论

一种方法是使用scikits.statsmodels中categorical函数。例如:

In [60]: from scikits.statsmodels.tools import categorical

In [61]: a = np.array( ['a', 'b', 'c', 'a', 'b', 'c'])

In [62]: b = categorical(a, drop=True)

In [63]: b.argmax(1)
Out[63]: array([0, 1, 2, 0, 1, 2])

categoricalb )的返回值实际上是一个设计矩阵,因此可以argmax上面的argmax调用使其接近所需格式。

In [64]: b
Out[64]:
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.],
       [ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])
收藏
评论

... 多年后....

出于完整性(因为未在答案中提及)和个人原因(我的模块中始终导入了pandas ,但不一定是sklearn ),使用pandas.get_dummies()也非常简单

import numpy as np
import pandas

In [1]: a = np.array(['a', 'b', 'c', 'a', 'b', 'c'])

In [2]: b = pandas.get_dummies(a)

In [3]: b
Out[3]: 
      a  b  c
   0  1  0  0
   1  0  1  0
   2  0  0  1
   3  1  0  0
   4  0  1  0
   5  0  0  1

In [3]: b.values.argmax(1)
Out[4]: array([0, 1, 2, 0, 1, 2])
收藏
评论
新手导航
  • 社区规范
  • 提出问题
  • 进行投票
  • 个人资料
  • 优化问题
  • 回答问题

关于我们

常见问题

内容许可

联系我们

@2020 AskGo
京ICP备20001863号