如何计算两个张量之间的余弦相似度?
neural-network
python
tensorflow
6
0

我有两个标准化张量,我需要计算这些张量之间的余弦相似度。我该如何使用TensorFlow?

cosine(normalize_a,normalize_b)

    a = tf.placeholder(tf.float32, shape=[None], name="input_placeholder_a")
    b = tf.placeholder(tf.float32, shape=[None], name="input_placeholder_b")
    normalize_a = tf.nn.l2_normalize(a,0)        
    normalize_b = tf.nn.l2_normalize(b,0)
参考资料:
Stack Overflow
收藏
评论
共 2 个回答
高赞 时间 活跃

时代变了。使用最新的TF API,可以通过调用tf.losses.cosine_distance进行计算。

例:

import tensorflow as tf
import numpy as np


x = tf.constant(np.random.uniform(-1, 1, 10)) 
y = tf.constant(np.random.uniform(-1, 1, 10))
s = tf.losses.cosine_distance(tf.nn.l2_normalize(x, 0), tf.nn.l2_normalize(y, 0), dim=0)
print(tf.Session().run(s))

当然, 1 - s是余弦相似度!

收藏
评论

这将完成工作:

a = tf.placeholder(tf.float32, shape=[None], name="input_placeholder_a")
b = tf.placeholder(tf.float32, shape=[None], name="input_placeholder_b")
normalize_a = tf.nn.l2_normalize(a,0)        
normalize_b = tf.nn.l2_normalize(b,0)
cos_similarity=tf.reduce_sum(tf.multiply(normalize_a,normalize_b))
sess=tf.Session()
cos_sim=sess.run(cos_similarity,feed_dict={a:[1,2,3],b:[2,4,6]})

打印0.99999988

收藏
评论
新手导航
  • 社区规范
  • 提出问题
  • 进行投票
  • 个人资料
  • 优化问题
  • 回答问题

关于我们

常见问题

内容许可

联系我们

@2020 AskGo
京ICP备20001863号