带通Butterworth滤波器在C ++中的实现
c++
image-processing
matlab
5
0

我正在使用openCV和c ++实现图像分析算法,但是我发现openCV正式不具有Butterworth带通滤波器的任何功能。在我的项目中,我必须将一个时间序列像素传递到Butterworth 5阶滤波器中,该函数将返回经过滤波的时间序列像素。巴特沃思(像素系列,阶数,频率),如果您有任何关于如何开始的想法,请告诉我。谢谢

编辑:获得帮助后,最后我想到了以下代码。可以计算分子系数和分母系数,但问题是某些数字与matlab结果不同。这是我的代码:

#include <iostream>
#include <stdio.h>
#include <vector>
#include <math.h>

using namespace std;

#define N 10 //The number of images which construct a time series for each pixel
#define PI 3.14159

double *ComputeLP( int FilterOrder )
{
    double *NumCoeffs;
    int m;
    int i;

    NumCoeffs = (double *)calloc( FilterOrder+1, sizeof(double) );
    if( NumCoeffs == NULL ) return( NULL );

    NumCoeffs[0] = 1;
    NumCoeffs[1] = FilterOrder;
    m = FilterOrder/2;
    for( i=2; i <= m; ++i)
    {
        NumCoeffs[i] =(double) (FilterOrder-i+1)*NumCoeffs[i-1]/i;
        NumCoeffs[FilterOrder-i]= NumCoeffs[i];
    }
    NumCoeffs[FilterOrder-1] = FilterOrder;
    NumCoeffs[FilterOrder] = 1;

    return NumCoeffs;
}

double *ComputeHP( int FilterOrder )
{
    double *NumCoeffs;
    int i;

    NumCoeffs = ComputeLP(FilterOrder);
    if(NumCoeffs == NULL ) return( NULL );

    for( i = 0; i <= FilterOrder; ++i)
        if( i % 2 ) NumCoeffs[i] = -NumCoeffs[i];

    return NumCoeffs;
}

double *TrinomialMultiply( int FilterOrder, double *b, double *c )
{
    int i, j;
    double *RetVal;

    RetVal = (double *)calloc( 4 * FilterOrder, sizeof(double) );
    if( RetVal == NULL ) return( NULL );

    RetVal[2] = c[0];
    RetVal[3] = c[1];
    RetVal[0] = b[0];
    RetVal[1] = b[1];

    for( i = 1; i < FilterOrder; ++i )
    {
        RetVal[2*(2*i+1)]   += c[2*i] * RetVal[2*(2*i-1)]   - c[2*i+1] * RetVal[2*(2*i-1)+1];
        RetVal[2*(2*i+1)+1] += c[2*i] * RetVal[2*(2*i-1)+1] + c[2*i+1] * RetVal[2*(2*i-1)];

        for( j = 2*i; j > 1; --j )
        {
            RetVal[2*j]   += b[2*i] * RetVal[2*(j-1)]   - b[2*i+1] * RetVal[2*(j-1)+1] +
                c[2*i] * RetVal[2*(j-2)]   - c[2*i+1] * RetVal[2*(j-2)+1];
            RetVal[2*j+1] += b[2*i] * RetVal[2*(j-1)+1] + b[2*i+1] * RetVal[2*(j-1)] +
                c[2*i] * RetVal[2*(j-2)+1] + c[2*i+1] * RetVal[2*(j-2)];
        }

        RetVal[2] += b[2*i] * RetVal[0] - b[2*i+1] * RetVal[1] + c[2*i];
        RetVal[3] += b[2*i] * RetVal[1] + b[2*i+1] * RetVal[0] + c[2*i+1];
        RetVal[0] += b[2*i];
        RetVal[1] += b[2*i+1];
    }

    return RetVal;
}

double *ComputeNumCoeffs(int FilterOrder)
{
    double *TCoeffs;
    double *NumCoeffs;
    int i;

    NumCoeffs = (double *)calloc( 2*FilterOrder+1, sizeof(double) );
    if( NumCoeffs == NULL ) return( NULL );

    TCoeffs = ComputeHP(FilterOrder);
    if( TCoeffs == NULL ) return( NULL );

    for( i = 0; i < FilterOrder; ++i)
    {
        NumCoeffs[2*i] = TCoeffs[i];
        NumCoeffs[2*i+1] = 0.0;
    }
    NumCoeffs[2*FilterOrder] = TCoeffs[FilterOrder];

    free(TCoeffs);

    return NumCoeffs;
}

double *ComputeDenCoeffs( int FilterOrder, double Lcutoff, double Ucutoff )
{
    int k;            // loop variables
    double theta;     // PI * (Ucutoff - Lcutoff) / 2.0
    double cp;        // cosine of phi
    double st;        // sine of theta
    double ct;        // cosine of theta
    double s2t;       // sine of 2*theta
    double c2t;       // cosine 0f 2*theta
    double *RCoeffs;     // z^-2 coefficients
    double *TCoeffs;     // z^-1 coefficients
    double *DenomCoeffs;     // dk coefficients
    double PoleAngle;      // pole angle
    double SinPoleAngle;     // sine of pole angle
    double CosPoleAngle;     // cosine of pole angle
    double a;         // workspace variables

    cp = cos(PI * (Ucutoff + Lcutoff) / 2.0);
    theta = PI * (Ucutoff - Lcutoff) / 2.0;
    st = sin(theta);
    ct = cos(theta);
    s2t = 2.0*st*ct;        // sine of 2*theta
    c2t = 2.0*ct*ct - 1.0;  // cosine of 2*theta

    RCoeffs = (double *)calloc( 2 * FilterOrder, sizeof(double) );
    TCoeffs = (double *)calloc( 2 * FilterOrder, sizeof(double) );

    for( k = 0; k < FilterOrder; ++k )
    {
        PoleAngle = PI * (double)(2*k+1)/(double)(2*FilterOrder);
        SinPoleAngle = sin(PoleAngle);
        CosPoleAngle = cos(PoleAngle);
        a = 1.0 + s2t*SinPoleAngle;
        RCoeffs[2*k] = c2t/a;
        RCoeffs[2*k+1] = s2t*CosPoleAngle/a;
        TCoeffs[2*k] = -2.0*cp*(ct+st*SinPoleAngle)/a;
        TCoeffs[2*k+1] = -2.0*cp*st*CosPoleAngle/a;
    }

    DenomCoeffs = TrinomialMultiply(FilterOrder, TCoeffs, RCoeffs );
    free(TCoeffs);
    free(RCoeffs);

    DenomCoeffs[1] = DenomCoeffs[0];
    DenomCoeffs[0] = 1.0;
    for( k = 3; k <= 2*FilterOrder; ++k )
        DenomCoeffs[k] = DenomCoeffs[2*k-2];


    return DenomCoeffs;
}

void filter(int ord, double *a, double *b, int np, double *x, double *y)
{
    int i,j;
    y[0]=b[0] * x[0];
    for (i=1;i<ord+1;i++)
    {
        y[i]=0.0;
        for (j=0;j<i+1;j++)
            y[i]=y[i]+b[j]*x[i-j];
        for (j=0;j<i;j++)
            y[i]=y[i]-a[j+1]*y[i-j-1];
    }
    for (i=ord+1;i<np+1;i++)
    {
        y[i]=0.0;
        for (j=0;j<ord+1;j++)
            y[i]=y[i]+b[j]*x[i-j];
        for (j=0;j<ord;j++)
            y[i]=y[i]-a[j+1]*y[i-j-1];
    }
}




int main(int argc, char *argv[])
{
    //Frequency bands is a vector of values - Lower Frequency Band and Higher Frequency Band

    //First value is lower cutoff and second value is higher cutoff
    double FrequencyBands[2] = {0.25,0.375};//these values are as a ratio of f/fs, where fs is sampling rate, and f is cutoff frequency
    //and therefore should lie in the range [0 1]
    //Filter Order

    int FiltOrd = 5;

    //Pixel Time Series
    /*int PixelTimeSeries[N];
    int outputSeries[N];
    */
    //Create the variables for the numerator and denominator coefficients
    double *DenC = 0;
    double *NumC = 0;
    //Pass Numerator Coefficients and Denominator Coefficients arrays into function, will return the same

    NumC = ComputeNumCoeffs(FiltOrd);
    for(int k = 0; k<11; k++)
    {
        printf("NumC is: %lf\n", NumC[k]);
    }
    //is A in matlab function and the numbers are correct
    DenC = ComputeDenCoeffs(FiltOrd, FrequencyBands[0], FrequencyBands[1]);
    for(int k = 0; k<11; k++)
    {
        printf("DenC is: %lf\n", DenC[k]);
    }
    double y[5];
    double x[5]={1,2,3,4,5};
    filter(5, DenC, NumC, 5, x, y);    
    return 1;
}

我得到我的代码的结果:

B = 1,0,-5,0,10,0,-10,0,5,0,-1 A = 1.000000000000000,-4.945988709743181,13.556489496973796,-24.700711850327743,32.994881546824828,-33.180726698160655,25.546126213403539,-14.802008410165968,6.285430089797051, -1.772929809750849,0.277753012228403

但是,如果我想在MATLAB中测试相同频段的系数,则会得到以下结果:

>> [B, A]=butter(5, [0.25,0.375])

B = 0.0002,0,-0.0008,0,0.0016,0,-0.0016,0,0.0008,0,-0.0002

A = 1.0000,-4.9460、13.5565,-24.7007、32.9948,-33.1806、25.5461,-14.8020、6.2854,-1.7729、0.2778

我已经测试了该网站:http://www.exstrom.com/journal/sigproc/代码,但结果与我的相同,而不是matlab。有人知道为什么吗?或如何获得与matlab工具箱相同的结果?

参考资料:
Stack Overflow
收藏
评论
共 2 个回答
高赞 时间 活跃

我终于找到了。我只需要实现从matlab源代码到c ++的以下代码。 “ the_mandrill”是正确的,我需要将归一化常数添加到系数中:

kern = exp(-j*w*(0:length(b)-1));
b = real(b*(kern*den(:))/(kern*b(:)));

编辑:这是最终版本,整个代码将返回与MATLAB完全相同的数字:

double *ComputeNumCoeffs(int FilterOrder,double Lcutoff, double Ucutoff, double *DenC)
{
    double *TCoeffs;
    double *NumCoeffs;
    std::complex<double> *NormalizedKernel;
    double Numbers[11]={0,1,2,3,4,5,6,7,8,9,10};
    int i;

    NumCoeffs = (double *)calloc( 2*FilterOrder+1, sizeof(double) );
    if( NumCoeffs == NULL ) return( NULL );

    NormalizedKernel = (std::complex<double> *)calloc( 2*FilterOrder+1, sizeof(std::complex<double>) );
    if( NormalizedKernel == NULL ) return( NULL );

    TCoeffs = ComputeHP(FilterOrder);
    if( TCoeffs == NULL ) return( NULL );

    for( i = 0; i < FilterOrder; ++i)
    {
        NumCoeffs[2*i] = TCoeffs[i];
        NumCoeffs[2*i+1] = 0.0;
    }
    NumCoeffs[2*FilterOrder] = TCoeffs[FilterOrder];
    double cp[2];
    double Bw, Wn;
    cp[0] = 2*2.0*tan(PI * Lcutoff/ 2.0);
    cp[1] = 2*2.0*tan(PI * Ucutoff / 2.0);

    Bw = cp[1] - cp[0];
    //center frequency
    Wn = sqrt(cp[0]*cp[1]);
    Wn = 2*atan2(Wn,4);
    double kern;
    const std::complex<double> result = std::complex<double>(-1,0);

    for(int k = 0; k<11; k++)
    {
        NormalizedKernel[k] = std::exp(-sqrt(result)*Wn*Numbers[k]);
    }
    double b=0;
    double den=0;
    for(int d = 0; d<11; d++)
    {
        b+=real(NormalizedKernel[d]*NumCoeffs[d]);
        den+=real(NormalizedKernel[d]*DenC[d]);
    }
    for(int c = 0; c<11; c++)
    {
        NumCoeffs[c]=(NumCoeffs[c]*den)/b;
    }

    free(TCoeffs);
    return NumCoeffs;
}
收藏
评论

我知道这是旧主题上的帖子,我通常将其保留为评论,但我显然无法做到这一点。

无论如何,对于正在寻找类似代码的人们,我想我应该发布该代码的来源链接(它也具有用于其他类型的Butterworth滤波器系数的C代码以及一些其他出色的信号处理代码)。

该代码位于: http : //www.exstrom.com/journal/sigproc/

另外,我认为已经有一段代码可以为您计算出所述缩放比例。

/**********************************************************************
sf_bwbp - calculates the scaling factor for a butterworth bandpass filter.
The scaling factor is what the c coefficients must be multiplied by so
that the filter response has a maximum value of 1.
*/

double sf_bwbp( int n, double f1f, double f2f )
{
    int k;            // loop variables
    double ctt;       // cotangent of theta
    double sfr, sfi;  // real and imaginary parts of the scaling factor
    double parg;      // pole angle
    double sparg;     // sine of pole angle
    double cparg;     // cosine of pole angle
    double a, b, c;   // workspace variables

    ctt = 1.0 / tan(M_PI * (f2f - f1f) / 2.0);
    sfr = 1.0;
    sfi = 0.0;

    for( k = 0; k < n; ++k )
    {
        parg = M_PI * (double)(2*k+1)/(double)(2*n);
        sparg = ctt + sin(parg);
        cparg = cos(parg);
        a = (sfr + sfi)*(sparg - cparg);
        b = sfr * sparg;
        c = -sfi * cparg;
        sfr = b - c;
        sfi = a - b - c;
    }

    return( 1.0 / sfr );
}
收藏
评论
新手导航
  • 社区规范
  • 提出问题
  • 进行投票
  • 个人资料
  • 优化问题
  • 回答问题

关于我们

常见问题

内容许可

联系我们

@2020 AskGo
京ICP备20001863号