ValueError:无法压缩dim [1],预期尺寸为1,为'sparse_softmax_cross_entropy_loss获得了3
python
tensorflow
6
0

我试图用本地图像替换训练和验证数据。但是,在运行训练代码时,出现了以下错误:

ValueError:无法挤压dim [1],预期尺寸为1,输入形状为[100,3]的'sparse_softmax_cross_entropy_loss / remove_squeezable_dimensions / Squeeze'(op:'Squeeze')得到3。

我不知道该如何解决。模型定义代码中没有可见变量。该代码是从TensorFlow教程中修改的。图像是jpg。

这是详细的错误消息:

INFO:tensorflow:Using default config.
INFO:tensorflow:Using config: {'_log_step_count_steps': 100, '_is_chief': True, '_model_dir': '/tmp/mnist_convnet_model', '_tf_random_seed': None, '_session_config': None, '_save_checkpoints_secs': 600, '_num_worker_replicas': 1, '_save_checkpoints_steps': None, '_service': None, '_keep_checkpoint_max': 5, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x00000288088D50F0>, '_keep_checkpoint_every_n_hours': 10000, '_task_type': 'worker', '_master': '', '_save_summary_steps': 100, '_num_ps_replicas': 0, '_task_id': 0}
Traceback (most recent call last):
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\common_shapes.py", line 686, in _call_cpp_shape_fn_impl
    input_tensors_as_shapes, status)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 473, in __exit__
    c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Can not squeeze dim[1], expected a dimension of 1, got 3 for 'sparse_softmax_cross_entropy_loss/remove_squeezable_dimensions/Squeeze' (op: 'Squeeze') with input shapes: [100,3].

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "D:\tf_exe_5_make_image_lables\cnn_mnist.py", line 214, in <module>
    tf.app.run()
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\platform\app.py", line 124, in run
    _sys.exit(main(argv))
  File "D:\tf_exe_5_make_image_lables\cnn_mnist.py", line 203, in main
    hooks=[logging_hook])
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\estimator\estimator.py", line 314, in train
    loss = self._train_model(input_fn, hooks, saving_listeners)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\estimator\estimator.py", line 743, in _train_model
    features, labels, model_fn_lib.ModeKeys.TRAIN, self.config)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\estimator\estimator.py", line 725, in _call_model_fn
    model_fn_results = self._model_fn(features=features, **kwargs)
  File "D:\tf_exe_5_make_image_lables\cnn_mnist.py", line 67, in cnn_model_fn
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\ops\losses\losses_impl.py", line 790, in sparse_softmax_cross_entropy
    labels, logits, weights, expected_rank_diff=1)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\ops\losses\losses_impl.py", line 720, in _remove_squeezable_dimensions
    labels, predictions, expected_rank_diff=expected_rank_diff)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\ops\confusion_matrix.py", line 76, in remove_squeezable_dimensions
    labels = array_ops.squeeze(labels, [-1])
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\ops\array_ops.py", line 2490, in squeeze
    return gen_array_ops._squeeze(input, axis, name)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 7049, in _squeeze
    "Squeeze", input=input, squeeze_dims=axis, name=name)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
    op_def=op_def)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 3162, in create_op
    compute_device=compute_device)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 3208, in _create_op_helper
    set_shapes_for_outputs(op)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 2427, in set_shapes_for_outputs
    return _set_shapes_for_outputs(op)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 2400, in _set_shapes_for_outputs
    shapes = shape_func(op)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 2330, in call_with_requiring
    return call_cpp_shape_fn(op, require_shape_fn=True)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\common_shapes.py", line 627, in call_cpp_shape_fn
    require_shape_fn)
  File "C:\Users\ASUS\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\common_shapes.py", line 691, in _call_cpp_shape_fn_impl
    raise ValueError(err.message)
ValueError: Can not squeeze dim[1], expected a dimension of 1, got 3 for 'sparse_softmax_cross_entropy_loss/remove_squeezable_dimensions/Squeeze' (op: 'Squeeze') with input shapes: [100,3].
>>> 

这是我的代码:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

#imports
import numpy as np
import tensorflow as tf
import glob
import cv2
import random
import matplotlib.pylab as plt
import pandas as pd
import sys as system
from mlxtend.preprocessing import one_hot
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder


tf.logging.set_verbosity(tf.logging.INFO)

def cnn_model_fn(features, labels, mode):
    """Model function for CNN"""
    #Input Layer
    input_layer = tf.reshape(features["x"], [-1,320,320,3])
    #Convolutional Layer #1
    conv1 = tf.layers.conv2d(
        inputs = input_layer,
        filters = 32,
        kernel_size=[5,5],
        padding = "same",
        activation=tf.nn.relu)

    #Pooling Layer #1
    pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2,2], strides=2)

    #Convolutional Layer #2 and Pooling Layer #2
    conv2 = tf.layers.conv2d(
        inputs=pool1,
        filters=64,
        kernel_size=[5,5],
        padding="same",
        activation=tf.nn.relu)
    pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2,2], strides=2)

    #Dense Layer
    pool2_flat = tf.reshape(pool2, [-1,80*80*64])
    dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
    dropout = tf.layers.dropout(
        inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)

    #Logits Layer
    logits = tf.layers.dense(inputs=dropout, units=3)

    predictions = {
        #Generate predictions (for PREDICT and EVAL mode)
        "classes": tf.argmax(input=logits, axis=1),
        #Add 'softmax_tensor' to the graph. It is used for PREDICT and by the
        #'logging_hook'
        "probabilities": tf.nn.softmax(logits, name="softmax_tensor")
    }

    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

    # Calculate Loss (for both TRAIN and EVAL modes
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)


# Configure the Training Op (for TRAIN mode)
    if mode == tf.estimator.ModeKeys.TRAIN:
        optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
        train_op = optimizer.minimize(
            loss=loss,
            global_step=tf.train.get_global_step())
        return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

    # Add evaluation metrics (for EVAL mode)
    eval_metric_ops = {
        "accuracy": tf.metrics.accuracy(
            labels=labels, predictions=predictions["classes"])}
    return tf.estimator.EstimatorSpec(
        mode=mode, loss=loss,eval_metric_ops=eval_metric_ops)

def main(unused_argv):
    '''
    #Load training and eval data
    mnist = tf.contrib.learn.datasets.load_dataset("mnist")
    train_data = mnist.train.images
    train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
    eval_data = mnist.test.images
    eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)
    '''
    #Load cats, dogs and cars image in local folder
    X_data = []
    files = glob.glob("data/cats/*.jpg")
    for myFile in files:
        image = cv2.imread (myFile)
        imgR = cv2.resize(image, (320, 320))
        imgNR = imgR/255
        X_data.append(imgNR)

    files = glob.glob("data/dogs/*.jpg")
    for myFile in files:
        image = cv2.imread (myFile)
        imgR = cv2.resize(image, (320, 320))
        imgNR = imgR/255
        X_data.append(imgNR)

    files = glob.glob ("data/cars/*.jpg")
    for myFile in files:
        image = cv2.imread (myFile)
        imgR = cv2.resize(image, (320, 320))
        imgNR = imgR/255
        X_data.append (imgNR)
    #print('X_data count:', len(X_data))

    X_data_Val = []
    files = glob.glob ("data/Validation/cats/*.jpg")
    for myFile in files:
        image = cv2.imread (myFile)
        imgR = cv2.resize(image, (320, 320))
        imgNR = imgR/255
        X_data_Val.append (imgNR)

    files = glob.glob ("data/Validation/dogs/*.jpg")
    for myFile in files:
        image = cv2.imread (myFile)
        imgR = cv2.resize(image, (320, 320))
        imgNR = imgR/255
        X_data_Val.append (imgNR)

    files = glob.glob ("data/Validation/cars/*.jpg")
    for myFile in files:
        image = cv2.imread (myFile)
        imgR = cv2.resize(image, (320, 320))
        imgNR = imgR/255
        X_data_Val.append (imgNR)


    #Feed One hot lables
    Y_Label = np.zeros(shape=(300,1))
    for el in range(0,100):
        Y_Label[el]=[0]
    for el in range(101,200):
        Y_Label[el]=[1]
    for el in range(201,300):
        Y_Label[el]=[2]
    onehot_encoder = OneHotEncoder(sparse=False)
    #Y_Label_RS = Y_Label.reshape(len(Y_Label), 1)
    Y_Label_Encode = onehot_encoder.fit_transform(Y_Label)

    #print('Y_Label_Encode shape:', Y_Label_Encode.shape)


    Y_Label_Val = np.zeros(shape=(30,1))
    for el in range(0, 10):
        Y_Label_Val[el]=[0]
    for el in range(11, 20):
        Y_Label_Val[el]=[1]
    for el in range(21, 30):
        Y_Label_Val[el]=[2]

    #Y_Label_Val_RS = Y_Label_Val.reshape(len(Y_Label_Val), 1)
    Y_Label_Val_Encode = onehot_encoder.fit_transform(Y_Label_Val)

    #print('Y_Label_Val_Encode shape:', Y_Label_Val_Encode.shape)

    train_data = np.array(X_data)
    train_data = train_data.astype(np.float32)
    train_labels = np.asarray(Y_Label_Encode, dtype=np.int32)

    eval_data = np.array(X_data_Val)
    eval_data = eval_data.astype(np.float32)
    eval_labels = np.asarray(Y_Label_Val_Encode, dtype=np.int32)

    print(train_data.shape)
    print(train_labels.shape)

    #Create the Estimator
    mnist_classifier = tf.estimator.Estimator(
        model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model")
    # Set up logging for predictions
    tensor_to_log = {"probabilities": "softmax_tensor"}
    logging_hook = tf.train.LoggingTensorHook(
        tensors=tensor_to_log, every_n_iter=50)


    # Train the model
    train_input_fn = tf.estimator.inputs.numpy_input_fn(
        x={"x": train_data},
        y=train_labels,
        batch_size=100,
        num_epochs=None,
        shuffle=True)



    mnist_classifier.train(
        input_fn=train_input_fn,
        #original steps are 20000
        steps=1, 
        hooks=[logging_hook])
    # Evaluate the model and print results
    eval_input_fn = tf.estimator.inputs.numpy_input_fn(
        x={"x": eval_data},
        y=eval_labels,
        num_epochs=1,
        shuffle=False)
    eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
    print(eval_results)

if __name__ == "__main__":
    tf.app.run()
参考资料:
Stack Overflow
收藏
评论
共 3 个回答
高赞 时间 活跃

我已经解决了这个错误。标签采用onehot编码,因此尺寸为[,10] ,而不是[,1] 。所以我用了tf.argmax()

收藏
评论

这里的错误来自tf.losses.sparse_softmax_cross_entropy(labels = labels,logits = logits)

TensorFlow文档明确指出“标签向量必须为logits的每一行提供一个用于真实类的特定索引”。因此,标签向量必须仅包含类索引(如0,1,2),而不应包括其各自的一键编码(如[1,0,0],[0,1,0],[0,0,1])。

重现错误以进一步说明:

import numpy as np
import tensorflow as tf

# Create random-array and assign as logits tensor
np.random.seed(12345)
logits = tf.convert_to_tensor(np.random.sample((4,4)))
print logits.get_shape() #[4,4]

# Create random-labels (Assuming only 4 classes)
labels = tf.convert_to_tensor(np.array([2, 2, 0, 1]))

loss_1 = tf.losses.sparse_softmax_cross_entropy(labels, logits)

sess = tf.Session()
sess.run(tf.global_variables_initializer())

print 'Loss: {}'.format(sess.run(loss_1)) # 1.44836854

# Now giving one-hot-encodings in place of class-indices for labels
wrong_labels = tf.convert_to_tensor(np.array([[0,0,1,0], [0,0,1,0], [1,0,0,0],[0,1,0,0]]))
loss_2 = tf.losses.sparse_softmax_cross_entropy(wrong_labels, logits)

# This should give you a similar error as soon as you define it

因此,请尝试在Y_Labels向量中提供类索引而不是一键编码。希望这能消除您的疑问。

收藏
评论

如果使用Keras的ImageDataGenerator ,则可以添加class_mode="sparse"以获得正确的级别:

train_datagen = keras.preprocessing.image.ImageDataGenerator(
        rescale=1./255,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=True)
train_generator = train_datagen.flow_from_directory(
        'data/train',
        target_size=(150, 150),
        batch_size=32, 
        class_mode="sparse")

另外,您也许可以使用softmax_cross_entropy ,它似乎对标签使用onehot编码。

收藏
评论
新手导航
  • 社区规范
  • 提出问题
  • 进行投票
  • 个人资料
  • 优化问题
  • 回答问题

关于我们

常见问题

内容许可

联系我们

@2020 AskGo
京ICP备20001863号