ValueError:模型的输出张量必须是TensorFlow`Layer`的输出
keras
machine-learning
python
tensor
12
0

我在Keras的最后一层中使用一些tensorflow函数(reduce_sum和l2_normalize)构建模型,而遇到此问题。我一直在寻找解决方案,但所有解决方案都与“ Keras张量”有关。

这是我的代码:

import tensorflow as tf;
from tensorflow.python.keras import backend as K

vgg16_model = VGG16(weights = 'imagenet', include_top = False, input_shape = input_shape);

fire8 = extract_layer_from_model(vgg16_model, layer_name = 'block4_pool');

pool8 = MaxPooling2D((3,3), strides = (2,2), name = 'pool8')(fire8.output);

fc1 = Conv2D(64, (6,6), strides= (1, 1), padding = 'same', name = 'fc1')(pool8);

fc1 = Dropout(rate = 0.5)(fc1);

fc2 = Conv2D(3, (1, 1), strides = (1, 1), padding = 'same', name = 'fc2')(fc1);

fc2 = Activation('relu')(fc2);

fc2 = Conv2D(3, (15, 15), padding = 'valid', name = 'fc_pooling')(fc2);

fc2_norm = K.l2_normalize(fc2, axis = 3);

est = tf.reduce_sum(fc2_norm, axis = (1, 2));
est = K.l2_normalize(est);

FC_model = Model(inputs = vgg16_model.input, outputs = est);

然后是错误:

ValueError:模型的输出张量必须是TensorFlow Layer的输出(因此保留过去的层元数据)。找到:Tensor(“ l2_normalize_3:0”,shape =(?, 3),dtype = float32)

我注意到,在不将fc2层传递给这些函数的情况下,该模型可以正常工作:

FC_model = Model(inputs = vgg16_model.input, outputs = fc2);

有人可以向我解释这个问题以及如何解决的建议吗?

参考资料:
Stack Overflow
收藏
评论
共 2 个回答
高赞 时间 活跃

我遇到了这个问题,因为我在模型中某处添加了两个张量x1+x2 ,而不是使用Add()([x1,x2])

那解决了问题。

收藏
评论

我找到了解决该问题的方法。对于遇到相同问题的任何人,您都可以使用Lambda层包装张量流操作,这就是我所做的:

from tensorflow.python.keras.layers import Lambda;

def norm(fc2):

    fc2_norm = K.l2_normalize(fc2, axis = 3);
    illum_est = tf.reduce_sum(fc2_norm, axis = (1, 2));
    illum_est = K.l2_normalize(illum_est);

    return illum_est;

illum_est = Lambda(norm)(fc2);
收藏
评论
新手导航
  • 社区规范
  • 提出问题
  • 进行投票
  • 个人资料
  • 优化问题
  • 回答问题

关于我们

常见问题

内容许可

联系我们

@2020 AskGo
京ICP备20001863号