斯坦福核心nlp java输出
java
nlp
stanford-nlp
5
0

我是Java和Stanford NLP工具包的新手,正在尝试将其用于项目。具体来说,我尝试使用Stanford Corenlp工具包来注释文本(使用Netbeans而不是命令行),并且尝试使用http://nlp.stanford.edu/software/corenlp.shtml#Usage (使用Stanford CoreNLP API)的问题是:有人可以告诉我如何在文件中获取输出,以便我可以对其进行进一步处理吗?

我尝试将图形和句子打印到控制台,只是为了查看内容。那个有效。基本上,我需要返回带注释的文档,以便可以从主类中调用它并输出一个文本文件(如果可能)。我正在尝试查看stanford corenlp的API,但是由于缺乏经验,我真的不知道返回此类信息的最佳方法是什么。

这是代码:

Properties props = new Properties();
    props.put("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref");
    StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

    // read some text in the text variable
    String text = "the quick fox jumps over the lazy dog";

    // create an empty Annotation just with the given text
    Annotation document = new Annotation(text);

    // run all Annotators on this text
    pipeline.annotate(document);

    // these are all the sentences in this document
    // a CoreMap is essentially a Map that uses class objects as keys and has values with custom types
    List<CoreMap> sentences = document.get(SentencesAnnotation.class);

    for(CoreMap sentence: sentences) {
      // traversing the words in the current sentence
      // a CoreLabel is a CoreMap with additional token-specific methods
      for (CoreLabel token: sentence.get(TokensAnnotation.class)) {
        // this is the text of the token
        String word = token.get(TextAnnotation.class);
        // this is the POS tag of the token
        String pos = token.get(PartOfSpeechAnnotation.class);
        // this is the NER label of the token
        String ne = token.get(NamedEntityTagAnnotation.class);       
      }

      // this is the parse tree of the current sentence
      Tree tree = sentence.get(TreeAnnotation.class);

      // this is the Stanford dependency graph of the current sentence
      SemanticGraph dependencies = sentence.get(CollapsedCCProcessedDependenciesAnnotation.class);
    }

    // This is the coreference link graph
    // Each chain stores a set of mentions that link to each other,
    // along with a method for getting the most representative mention
    // Both sentence and token offsets start at 1!
    Map<Integer, CorefChain> graph = 
      document.get(CorefChainAnnotation.class);
参考资料:
Stack Overflow
收藏
评论
共 1 个回答
高赞 时间 活跃

在代码示例中显示了任何或所有自然语言分析之后,您所需要做的就是以常规Java方式将其发送到文件中,例如,使用FileWriter进行文本格式输出。具体来说,这是一个简单的完整示例,该示例显示发送到文件的输出(如果您给它提供适当的命令行参数):

import java.io.*;
import java.util.*;

import edu.stanford.nlp.io.*;
import edu.stanford.nlp.ling.*;
import edu.stanford.nlp.pipeline.*;
import edu.stanford.nlp.trees.*;
import edu.stanford.nlp.util.*;

public class StanfordCoreNlpDemo {

  public static void main(String[] args) throws IOException {
    PrintWriter out;
    if (args.length > 1) {
      out = new PrintWriter(args[1]);
    } else {
      out = new PrintWriter(System.out);
    }
    PrintWriter xmlOut = null;
    if (args.length > 2) {
      xmlOut = new PrintWriter(args[2]);
    }

    StanfordCoreNLP pipeline = new StanfordCoreNLP();
    Annotation annotation;
    if (args.length > 0) {
      annotation = new Annotation(IOUtils.slurpFileNoExceptions(args[0]));
    } else {
      annotation = new Annotation("Kosgi Santosh sent an email to Stanford University. He didn't get a reply.");
    }

    pipeline.annotate(annotation);
    pipeline.prettyPrint(annotation, out);
    if (xmlOut != null) {
      pipeline.xmlPrint(annotation, xmlOut);
    }
    // An Annotation is a Map and you can get and use the various analyses individually.
    // For instance, this gets the parse tree of the first sentence in the text.
    List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class);
    if (sentences != null && sentences.size() > 0) {
      CoreMap sentence = sentences.get(0);
      Tree tree = sentence.get(TreeCoreAnnotations.TreeAnnotation.class);
      out.println();
      out.println("The first sentence parsed is:");
      tree.pennPrint(out);
    }
  }

}
收藏
评论
新手导航
  • 社区规范
  • 提出问题
  • 进行投票
  • 个人资料
  • 优化问题
  • 回答问题

关于我们

常见问题

内容许可

联系我们

@2020 AskGo
京ICP备20001863号