如何在Numpy中实现ReLU功能
machine-learning
neural-network
numpy
python
5
0

我想创建一个简单的神经网络,并希望使用ReLU函数。有人可以告诉我如何使用numpy实现该功能的线索。谢谢你的时间!

参考资料:
Stack Overflow
收藏
评论
共 5 个回答
高赞 时间 活跃

如果您不介意x被修改,请使用np.maximum(x, 0, x)Daniel S指出了这一点。它的速度要快得多,而且由于人们可能会忽略它,因此我将其重新发布为答案。比较如下:

max method:
10 loops, best of 3: 238 ms per loop
multiplication method:
10 loops, best of 3: 128 ms per loop
abs method:
10 loops, best of 3: 311 ms per loop
in-place max method:
10 loops, best of 3: 38.4 ms per loop
收藏
评论

我发现了使用numpy的ReLU更快的方法。您也可以使用numpy的花式索引功能。

花式指数:

每个循环20.3 ms±272 µs(平均±标准偏差,运行7次,每个循环10个)

>>> x = np.random.random((5,5)) - 0.5 
>>> x
array([[-0.21444316, -0.05676216,  0.43956365, -0.30788116, -0.19952038],
       [-0.43062223,  0.12144647, -0.05698369, -0.32187085,  0.24901568],
       [ 0.06785385, -0.43476031, -0.0735933 ,  0.3736868 ,  0.24832288],
       [ 0.47085262, -0.06379623,  0.46904916, -0.29421609, -0.15091168],
       [ 0.08381359, -0.25068492, -0.25733763, -0.1852205 , -0.42816953]])
>>> x[x<0]=0
>>> x
array([[ 0.        ,  0.        ,  0.43956365,  0.        ,  0.        ],
       [ 0.        ,  0.12144647,  0.        ,  0.        ,  0.24901568],
       [ 0.06785385,  0.        ,  0.        ,  0.3736868 ,  0.24832288],
       [ 0.47085262,  0.        ,  0.46904916,  0.        ,  0.        ],
       [ 0.08381359,  0.        ,  0.        ,  0.        ,  0.        ]])

这是我的基准:

import numpy as np
x = np.random.random((5000, 5000)) - 0.5
print("max method:")
%timeit -n10 np.maximum(x, 0)
print("max inplace method:")
%timeit -n10 np.maximum(x, 0,x)
print("multiplication method:")
%timeit -n10 x * (x > 0)
print("abs method:")
%timeit -n10 (abs(x) + x) / 2
print("fancy index:")
%timeit -n10 x[x<0] =0

max method:
241 ms ± 3.53 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
max inplace method:
38.5 ms ± 4 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
multiplication method:
162 ms ± 3.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
abs method:
181 ms ± 4.18 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
fancy index:
20.3 ms ± 272 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
收藏
评论

您可以用更简单的方法来做到这一点:

def ReLU(x):
    return x * (x > 0)

def dReLU(x):
    return 1. * (x > 0)
收藏
评论

理查德·莫恩(RichardMöhn)的比较并不公平。
正如Andrea Di Biagio的评论 ,就地方法np.maximum(x, 0, x)将在第一个循环处修改x。

所以这是我的基准:

import numpy as np

def baseline():
    x = np.random.random((5000, 5000)) - 0.5
    return x

def relu_mul():
    x = np.random.random((5000, 5000)) - 0.5
    out = x * (x > 0)
    return out

def relu_max():
    x = np.random.random((5000, 5000)) - 0.5
    out = np.maximum(x, 0)
    return out

def relu_max_inplace():
    x = np.random.random((5000, 5000)) - 0.5
    np.maximum(x, 0, x)
    return x 

计时:

print("baseline:")
%timeit -n10 baseline()
print("multiplication method:")
%timeit -n10 relu_mul()
print("max method:")
%timeit -n10 relu_max()
print("max inplace method:")
%timeit -n10 relu_max_inplace()

得到结果:

baseline:
10 loops, best of 3: 425 ms per loop
multiplication method:
10 loops, best of 3: 596 ms per loop
max method:
10 loops, best of 3: 682 ms per loop
max inplace method:
10 loops, best of 3: 602 ms per loop

就地最大方法仅比最大方法快一点,这可能是因为它省略了“ out”的变量分配。而且它仍然比乘法方法慢。
而且由于您正在实现ReLU函数。您可能必须通过relu将“ x”保存为反向传播。例如:

def relu_backward(dout, cache):
    x = cache
    dx = np.where(x > 0, dout, 0)
    return dx

因此,我建议您使用乘法方法。

收藏
评论

有两种方法。

>>> x = np.random.random((3, 2)) - 0.5
>>> x
array([[-0.00590765,  0.18932873],
       [-0.32396051,  0.25586596],
       [ 0.22358098,  0.02217555]])
>>> np.maximum(x, 0)
array([[ 0.        ,  0.18932873],
       [ 0.        ,  0.25586596],
       [ 0.22358098,  0.02217555]])
>>> x * (x > 0)
array([[-0.        ,  0.18932873],
       [-0.        ,  0.25586596],
       [ 0.22358098,  0.02217555]])
>>> (abs(x) + x) / 2
array([[ 0.        ,  0.18932873],
       [ 0.        ,  0.25586596],
       [ 0.22358098,  0.02217555]])

如果使用以下代码计时结果:

import numpy as np

x = np.random.random((5000, 5000)) - 0.5
print("max method:")
%timeit -n10 np.maximum(x, 0)

print("multiplication method:")
%timeit -n10 x * (x > 0)

print("abs method:")
%timeit -n10 (abs(x) + x) / 2

我们得到:

max method:
10 loops, best of 3: 239 ms per loop
multiplication method:
10 loops, best of 3: 145 ms per loop
abs method:
10 loops, best of 3: 288 ms per loop

因此乘法似乎是最快的。

收藏
评论
新手导航
  • 社区规范
  • 提出问题
  • 进行投票
  • 个人资料
  • 优化问题
  • 回答问题

关于我们

常见问题

内容许可

联系我们

@2020 AskGo
京ICP备20001863号