如何绘制内部带有两种颜色的粒子的水晶球
computer-vision
matlab
r
6
0

我只是提出一个可能关闭的想法。我需要画一个水晶球,红色和蓝色的粒子随机位于其中。我想我必须要用photoshop,甚至要尝试使图像变成球形,但是因为这是用于研究论文,而且不一定花哨,所以我想知道是否有任何方法可以使用R,matlab或其他任何方法进行编程其他语言。

参考资料:
Stack Overflow
收藏
评论
共 9 个回答
高赞 时间 活跃

问题是

我想知道是否可以使用R,matlab或任何其他语言进行编程

TeX已经完成了Turing的开发,可以被认为是一种编程语言,我花了一些时间并使用TikZ在LaTeX中创建了一个示例。正如OP所写的那样,它是用于研究论文的,其优点是可以将其直接集成到论文中(假设它也是用LaTeX编写的)。

因此,这里是:

\documentclass[tikz]{standalone}
\usetikzlibrary{positioning, backgrounds}
\usepackage{pgf}
\pgfmathsetseed{\number\pdfrandomseed}

\begin{document}
\begin{tikzpicture}[background rectangle/.style={fill=black},
                    show background rectangle,
                   ] 

    % Definitions
    \def\ballRadius{5}
    \def\pointRadius{0.1}
    \def\nRed{30}
    \def\nBlue{30}

    % Draw all red points
    \foreach \i in {1,...,\nRed}
    {
        % Get random coordinates
        \pgfmathparse{0.9*\ballRadius*rand}\let\mrho\pgfmathresult
        \pgfmathparse{360*rand}\let\mpsi\pgfmathresult
        \pgfmathparse{360*rand}\let\mphi\pgfmathresult

        % Convert to x/y/z
        \pgfmathparse{\mrho*sin(\mphi)*cos(\mpsi)}\let\mx\pgfmathresult
        \pgfmathparse{\mrho*sin(\mphi)*sin(\mpsi)}\let\my\pgfmathresult
        \pgfmathparse{\mrho*cos(\mphi)}\let\mz\pgfmathresult

        \fill[ball color=blue] (\mz,\mx,\my) circle (\pointRadius);
    }

    % Draw all blue points
    \foreach \i in {1,...,\nBlue}
    {
        % Get random coordinates
        \pgfmathparse{0.9*\ballRadius*rand}\let\mrho\pgfmathresult
        \pgfmathparse{360*rand}\let\mpsi\pgfmathresult
        \pgfmathparse{360*rand}\let\mphi\pgfmathresult

        % Convert to x/y/z
        \pgfmathparse{\mrho*sin(\mphi)*cos(\mpsi)}\let\mx\pgfmathresult
        \pgfmathparse{\mrho*sin(\mphi)*sin(\mpsi)}\let\my\pgfmathresult
        \pgfmathparse{\mrho*cos(\mphi)}\let\mz\pgfmathresult

        \fill[ball color=red] (\mz,\mx,\my) circle (\pointRadius);
    }

    % Draw ball
    \shade[ball color=blue!10!white,opacity=0.65] (0,0) circle (\ballRadius);

\end{tikzpicture}
\end{document}

结果:

球

收藏
评论

我建议您看一下光线跟踪程序例如 povray 。我对这种语言不太了解,但是随便摆弄了一些示例,我设法不费吹灰之力就制作了这种语言。

在此处输入图片说明

background { color rgb <1,1,1,1> }
#include "colors.inc"
#include "glass.inc" 

#declare R = 3;
#declare Rs = 0.05;
#declare Rd = R - Rs ;

camera {location <1, 10 ,1>
right <0, 4/3, 0>
 up    <0,0.1,1>
 look_at  <0.0 , 0.0 , 0.0>}

light_source { 
    z*10000
    White
    }

light_source{<15,25,-25> color  rgb <1,1,1> }

#declare T_05 = texture { pigment { color Clear } finish { F_Glass1 } } 


#declare Ball = sphere {
    <0,0,0>, R
      pigment { rgbf <0.75,0.8,1,0.9> } // A blue-tinted glass

    finish
  { phong 0.5 phong_size 40  // A highlight
    reflection 0.2  // Glass reflects a bit
  }
    interior{ior 1.5}
  }

#declare redsphere =    sphere {
    <0,0,0>, Rs
        pigment{color Red}
      texture { T_05 } interior { I_Glass4 fade_color Col_Red_01 }}

#declare bluesphere =   sphere {
    <0,0,0>, Rs
    pigment{color Blue}
      texture { T_05 } interior { I_Glass4 fade_color Col_Blue_01 }}

object{ Ball }

#declare Rnd_1 = seed (123);
 #for (Cntr, 0, 200)
#declare rr = Rd* rand( Rnd_1);
#declare theta = -pi/2 + pi * rand( Rnd_1);
#declare phi = -pi+2*pi* rand( Rnd_1);
#declare xx = rr * cos(theta) * cos(phi);
#declare yy = rr * cos(theta) * sin(phi);
#declare zz = rr * sin(theta) ;
object{ bluesphere  translate  <xx , yy , zz > }
#declare rr = Rd* rand( Rnd_1);
#declare theta = -pi/2 + pi * rand( Rnd_1);
#declare phi = -pi+2*pi* rand( Rnd_1);
#declare xx = rr * cos(theta) * cos(phi);
#declare yy = rr * cos(theta) * sin(phi);
#declare zz = rr * sin(theta) ;
object{ redsphere  translate  <xx , yy , zz > }
#end 
收藏
评论

这与Ben Bolker的答案非常相似,但我正在演示如何通过使用一些神秘的着色为水晶球添加一点光环:

library(rgl)
lapply(seq(0.01, 1, by=0.01), function(x) rgl.spheres(0,0,0, rad=1.1*x, alpha=.01,
    col=colorRampPalette(c("orange","blue"))(100)[100*x]))
rgl.spheres(0,0,0, radius=1.11, col="red", alpha=.1)
rgl.spheres(0,0,0, radius=1.12, col="black", alpha=.1)
rgl.spheres(0,0,0, radius=1.13, col="white", alpha=.1)

xyz <- matrix(rnorm(3*100), ncol=3)
xyz <- xyz * runif(100)^(1/3) / sqrt(rowSums(xyz^2))

rgl.spheres(xyz[1:50,], rad=.02, col="blue")
rgl.spheres(xyz[51:100,], rad=.02, col="red")

rgl.bg(col="black")
rgl.viewpoint(zoom=.75)
rgl.snapshot("crystalball.png")

在此处输入图片说明在此处输入图片说明

两者之间的唯一区别在于lapply调用。您会看到,仅通过更改colorRampPalette的颜色, colorRampPalette显着更改水晶球的外观。左边的一个使用上面的lapply代码,右边的一个使用lapply代码:

lapply(seq(0.01, 1, by=0.01), function(x) rgl.spheres(0,0,0,rad=1.1*x, alpha=.01,
     col=colorRampPalette(c("orange","yellow"))(100)[100*x]))
...code from above

这是一种不同的方法,您可以定义自己的纹理文件并使用该文件为水晶球上色:

# create a texture file, get as creative as you want:
png("texture.png")
x <- seq(1,870)
y <- seq(1,610)
z <- matrix(rnorm(870*610), nrow=870)
z <- t(apply(z,1,cumsum))/100

# Swirly texture options:
# Use the Simon O'Hanlon's roll function from this answer:
# http://stackoverflow.com/questions/18791212/equivalent-to-numpy-roll-in-r/18791252#18791252
# roll <- function( x , n ){
#   if( n == 0 )
#     return( x )
#   c( tail(x,n) , head(x,-n) )
# }

# One option
# z <- mapply(function(x,y) roll(z[,x], y), x = 1:ncol(z), y=1:ncol(z))
#
# Another option
# z <- mapply(function(x,y) roll(z[,x], y), x = 1:ncol(z), y=rep(c(1:50,51:2), 10))[1:870, 1:610]
#
# One more
# z <- mapply(function(x,y) roll(z[,x], y), x = 1:ncol(z), y=rep(seq(0, 100, by=10), each=5))[1:870, 1:610]

par(mar=c(0,0,0,0))
image(x, y, z, col = colorRampPalette(c("cyan","black"))(100), axes = FALSE)
dev.off()

xyz <- matrix(rnorm(3*100), ncol=3)
xyz <- xyz * runif(100)^(1/3) / sqrt(rowSums(xyz^2))

rgl.spheres(xyz[1:50,], rad=.02, col="blue")
rgl.spheres(xyz[51:100,], rad=.02, col="red")

rgl.spheres(0,0,0, rad=1.1, texture="texture.png", alpha=0.4, back="cull")
rgl.viewpoint(phi=90, zoom=.75) # change the view if need be
rgl.bg(color="black")

在此处输入图片说明在此处输入图片说明在此处输入图片说明在此处输入图片说明

左上方的第一张图片是您仅运行上面的代码所得到的图像,其他三张图片是在注释掉的代码中使用不同选项的结果。

收藏
评论

在R中,您可以使用rasterImage函数添加到当前绘图中,您可以创建/下载一个漂亮的水晶球图像并将其加载到R中(请参阅png,EBImage或其他程序包),然后将其设置为半透明并使用rasterImage将其添加到当前绘图中。我可能会先绘制两个有色点,然后在顶部绘制球的图像(具有透明性,它们仍将可见并且看起来像在内部)。

一种更简单的方法(尽管可能看起来不太好看)是使用polygon函数代表球来绘制一个半透明的灰色圆圈。

如果要在3维中执行此操作,请查看rgl软件包,这是一个基本示例:

library(rgl)
open3d()
spheres3d(0,0,0, radius=1, color='lightgrey', alpha=0.2)
spheres3d(c(.3,-.3),c(-.2,.4),c(.1,.2), color=c('red','blue'),
     alpha=1, radius=0.15)
收藏
评论

在带有d3.js的Javascript中: http : //jsfiddle.net/jjcosare/rggn86aj/6/或>运行代码段

对于在线发布很有用。

var particleChangePerMs = 1000;
var particleTotal = 250;
var particleSizeInRelationToCircle = 75;

var svgWidth = (window.innerWidth > window.innerHeight) ? window.innerHeight : window.innerWidth;
var svgHeight = (window.innerHeight > window.innerWidth) ? window.innerWidth : window.innerHeight;

var circleX = svgWidth / 2;
var circleY = svgHeight / 2;
var circleRadius = (circleX / 4) + (circleY / 4);
var circleDiameter = circleRadius * 2;

var particleX = function() {
  return Math.floor(Math.random() * circleDiameter) + circleX - circleRadius;
};
var particleY = function() {
  return Math.floor(Math.random() * circleDiameter) + circleY - circleRadius;
};
var particleRadius = function() {
  return circleDiameter / particleSizeInRelationToCircle;
};
var particleColorList = [
  'blue',
  'red'
];
var particleColor = function() {
  return "url(#" + particleColorList[Math.floor(Math.random() * particleColorList.length)] + "Gradient)";
};

var svg = d3.select("#quantumBall")
  .append("svg")
  .attr("width", svgWidth)
  .attr("height", svgHeight);

var blackGradient = svg.append("svg:defs")
  .append("svg:radialGradient")
  .attr("id", "blackGradient")
  .attr("cx", "50%")
  .attr("cy", "50%")
  .attr("radius", "90%")

blackGradient.append("svg:stop")
  .attr("offset", "80%")
  .attr("stop-color", "black")

blackGradient.append("svg:stop")
  .attr("offset", "100%")
  .attr("stop-color", "grey")

var redGradient = svg.append("svg:defs")
  .append("svg:linearGradient")
  .attr("id", "redGradient")
  .attr("x1", "0%")
  .attr("y1", "0%")
  .attr("x2", "100%")
  .attr("y2", "100%")
  .attr("spreadMethod", "pad");

redGradient.append("svg:stop")
  .attr("offset", "0%")
  .attr("stop-color", "red")
  .attr("stop-opacity", 1);

redGradient.append("svg:stop")
  .attr("offset", "100%")
  .attr("stop-color", "pink")
  .attr("stop-opacity", 1);

var blueGradient = svg.append("svg:defs")
  .append("svg:linearGradient")
  .attr("id", "blueGradient")
  .attr("x1", "0%")
  .attr("y1", "0%")
  .attr("x2", "100%")
  .attr("y2", "100%")
  .attr("spreadMethod", "pad");

blueGradient.append("svg:stop")
  .attr("offset", "0%")
  .attr("stop-color", "blue")
  .attr("stop-opacity", 1);

blueGradient.append("svg:stop")
  .attr("offset", "100%")
  .attr("stop-color", "skyblue")
  .attr("stop-opacity", 1);

svg.append("circle")
  .attr("r", circleRadius)
  .attr("cx", circleX)
  .attr("cy", circleY)
  .attr("fill", "url(#blackGradient)");

function isParticleInQuantumBall(particle) {
  var x1 = circleX;
  var y1 = circleY;
  var r1 = circleRadius;
  var x0 = particle.x;
  var y0 = particle.y;
  var r0 = particle.radius;
  return Math.sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0)) < (r1 - r0);
};

function randomizedParticles() {
  d3.selectAll("svg > .particle").remove();
  var particle = {};
  particle.radius = particleRadius();
  for (var i = 0; i < particleTotal;) {
    particle.x = particleX();
    particle.y = particleY();
    particle.color = particleColor();
    if (isParticleInQuantumBall(particle)) {
      svg.append("circle")
        .attr("class", "particle")
        .attr("cx", particle.x)
        .attr("cy", particle.y)
        .attr("r", particle.radius)
        .attr("fill", particle.color);
      i++;
    }
  }
}

setInterval(randomizedParticles, particleChangePerMs);
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.4.11/d3.min.js"></script>
<div id="quantumBall"></div>
收藏
评论

在游戏中有些晚,但这是一个实现scatter3sph的Matlab代码(来自FEX)

figure('Color', [0.04 0.15 0.4]);
nos = 11; % number small of spheres
S= 3; %small spheres sizes
Grid_Size=256;
%Coordinates
X= Grid_Size*(0.5+rand(2*nos,1));
Y= Grid_Size*(0.5+rand(2*nos,1));
Z= Grid_Size*(0.5+rand(2*nos,1));
%Small spheres colors: (Red & Blue)
C= ones(nos,1)*[0 0 1];
C= [C;ones(nos,1)*[1 0 0]];
% Plot big Sphere
scatter3sph(Grid_Size,Grid_Size,Grid_Size,'size',220,'color',[0.9 0.9 0.9]); hold on
light('Position',[0 0 0],'Style','local');
alpha(0.45);
material shiny 
% Plot small spheres 
scatter3sph(X,Y,Z,'size',S,'color',C);  
axis equal; axis tight; grid off
view([108 -42]);
set(gca,'Visible','off')
set(gca,'color','none')

在此处输入图片说明

收藏
评论

Matlab的另一种解决方案。

[x,y,z] = sphere(50);
[img] = imread('crystal.jpg');

figure('Color',[0 0 0]);
surf(x,y,z,img,'edgeColor','none','FaceAlpha',.6,'FaceColor','texturemap')
hold on;

i = 0;
while i<100
    px = randn();
    py = randn();
    pz = randn();
    d = pdist([0 0 0; px py pz],'euclidean');
    if d<1
        if mod(i,2)==0
            scatter3(px, py, pz,30,'ro','filled');
        else
            scatter3(px, py, pz,30,'bo','filled');
        end
        i = i+1;
    end
end

hold off;
camlight;

axis equal;
axis off;

输出:

在此处输入图片说明

收藏
评论

我只需要在Matlab中生成与R-answer一样闪亮的东西即可:)因此,这是我的深夜,过于复杂,超慢的解决方案,但不是吗? :)

figure(1), clf, hold on
whitebg('k')    

light(...
    'Color','w',...
    'Position',[-3 -1 0],...
    'Style','infinite')

colormap cool
brighten(0.2)

[x,y,z] = sphere(50);
surf(x,y,z);

lighting phong
alpha(.2)
shading interp
grid off

blues = 2*rand(15,3)-1;
reds  = 2*rand(15,3)-1;
R     = linspace(0.001, 0.02, 20);

done = false;
while ~done

    indsB = sum(blues.^2,2)>1-0.02;    
    if any(indsB)
        done = false;
        blues(indsB,:) = 2*rand(sum(indsB),3)-1; 
    else
        done = true;
    end

    indsR = sum( reds.^2,2)>1-0.02;
    if any(indsR)
        done = false;
        reds(indsR,:) = 2*rand(sum(indsR),3)-1; 
    else
        done = done && true;
    end

end

nR = numel(R);
[x,y,z] = sphere(15);
for ii = 1:size(blues,1)
    for jj = 1:nR        
        surf(x*R(jj)-blues(ii,1), y*R(jj)-blues(ii,2), z*R(jj)-blues(ii,3), ...
            'edgecolor', 'none', ...
            'facecolor', [1-jj/nR 1-jj/nR 1],...
            'facealpha', exp(-(jj-1)/5));
    end
end

nR = numel(R);
[x,y,z] = sphere(15);
for ii = 1:size(reds,1)
    for jj = 1:nR        
        surf(x*R(jj)-reds(ii,1), y*R(jj)-reds(ii,2), z*R(jj)-reds(ii,3), ...
            'edgecolor', 'none', ...
            'facecolor', [1 1-jj/nR 1-jj/nR],...
            'facealpha', exp(-(jj-1)/5));
    end
end

set(findobj(gca,'type','surface'),...
    'FaceLighting','phong',...
    'SpecularStrength',1,...
    'DiffuseStrength',0.6,...
    'AmbientStrength',0.9,...
    'SpecularExponent',200,...
    'SpecularColorReflectance',0.4 ,...
    'BackFaceLighting','lit');

axis equal
view(30,60)

在此处输入图片说明

收藏
评论

在R中,使用rgl包(R-to-OpenGL接口):

library(rgl)
n <- 100
set.seed(101)
randcoord <- function(n=100,r=1) {
    d <- data.frame(rho=runif(n)*r,phi=runif(n)*2*pi,psi=runif(n)*2*pi)
    with(d,data.frame(x=rho*sin(phi)*cos(psi),
                      y=rho*sin(phi)*sin(psi),
                      z=rho*cos(phi)))
}
    ## http://en.wikipedia.org/wiki/List_of_common_coordinate_transformations
with(randcoord(50,r=0.95),spheres3d(x,y,z,radius=0.02,col="red"))
with(randcoord(50,r=0.95),spheres3d(x,y,z,radius=0.02,col="blue"))
spheres3d(0,0,0,radius=1,col="white",alpha=0.5,shininess=128)
rgl.bg(col="black")
rgl.snapshot("crystalball.png")

在此处输入图片说明

收藏
评论
新手导航
  • 社区规范
  • 提出问题
  • 进行投票
  • 个人资料
  • 优化问题
  • 回答问题

关于我们

常见问题

内容许可

联系我们

@2020 AskGo
京ICP备20001863号