图像处理-实现Sobel滤波器
edge-detection
image-processing
5
0

我有一个实现Sobel过滤器的任务,如您所知,它是用于边缘检测的图像处理过滤器。但是不幸的是,我在图像处理领域没有任何经验,以至于我什至不知道计算机中图像是如何表示的。完全没有这个领域的知识。

我已经阅读了一些论文和PDF,但是它们专注于许多主题,我觉得我可能不需要它们来完成任务。

我们很高兴知道您的建议,或者为此目的有任何特殊的论文,PDF,教程或快速指南。

谢谢

编辑:

谢谢大家:)我们的工作结果可以从这里下载。

参考资料:
Stack Overflow
收藏
评论
共 5 个回答
高赞 时间 活跃

这很容易,您只需要使用Sobel滤波器对图像进行卷积即可。 Sobel滤波器有两个内核,x方向内核和y方向内核。 x方向内核检测水平边缘,而y方向内核检测垂直边缘。

x方向内核(大小为3x3)

float kernelx[3][3] = {{-1, 0, 1}, 
                       {-2, 0, 2}, 
                       {-1, 0, 1}};

y向内核

float kernely[3][3] = {{-1, -2, -1}, 
                        {0,  0,  0}, 
                        {1,  2,  1}};

要计算像素(x,y)处的卷积,请定义一个大小等于内核大小的窗口(用于计算x大小和y大小的源代码是相同的):

double magX = 0.0; // this is your magnitude

for(int a = 0; a < 3; a++)
{
    for(int b = 0; b < 3; b++)
    {            
        int xn = x + a - 1;
        int yn = y + b - 1;

        int index = xn + yn * width;
        magX += image[index] * kernelx[a][b];
    }
 }

请注意,输入是灰度图像,可以将其表示为double的1D数组(这只是一个技巧,因为可以使用index = [x + y * width]来访问坐标(x,y)中的像素值)

在给定magX和magY的情况下计算像素(x,y)的大小:

mag = sqrt(magX ^ 2 + magY ^ 2)

收藏
评论

Gx估计x方向上的梯度(列),而Gy估计y方向上的梯度(行)。因此,Gy检测水平线,而Gx检测垂直线。

收藏
评论

Sobel Operator Wikipedia页面很好地描述了如何执行。还有其他运营商,例如Roberts crossPrewitt

使用卷积运算,您可以通过更改内核矩阵来切换方法。下面,使用Marvin Framework实施Sobel和Convolution可能会为您提供帮助。

索贝尔:

public class Sobel extends MarvinAbstractImagePlugin{

    // Definitions
    double[][] matrixSobelX = new double[][]{
            {1,     0,  -1},
            {2,     0,  -2},
            {1,     0,  -1}
    };
    double[][] matrixSobelY = new double[][]{
            {-1,    -2,     -1},
            {0,     0,      0},
            {1,     2,      1}
    };

    private MarvinImagePlugin   convolution;

    public void load(){
        convolution = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.convolution.jar");
    }

    public MarvinAttributesPanel getAttributesPanel(){
        return null;
    }
    public void process
    (
        MarvinImage imageIn, 
        MarvinImage imageOut,
        MarvinAttributes attrOut,
        MarvinImageMask mask, 
        boolean previewMode
    )
    {
        convolution.setAttribute("matrix", matrixSobelX);
        convolution.process(imageIn, imageOut, null, mask, previewMode);
        convolution.setAttribute("matrix", matrixSobelY);
        convolution.process(imageIn, imageOut, null, mask, previewMode);
    }
}

卷积:

public class Convolution extends MarvinAbstractImagePlugin{

    private MarvinAttributesPanel   attributesPanel;
    private MarvinAttributes        attributes;

    public void process
    (
        MarvinImage imageIn, 
        MarvinImage imageOut,
        MarvinAttributes attributesOut,
        MarvinImageMask mask, 
        boolean previewMode
    )
    {
        double[][] matrix = (double[][])attributes.get("matrix");

        if(matrix != null && matrix.length > 0){
            for(int y=0; y<imageIn.getHeight(); y++){
                for(int x=0; x<imageIn.getWidth(); x++){
                    applyMatrix(x, y, matrix, imageIn, imageOut);
                }
            }
        }
    }

    private void applyMatrix
    (
        int x,
        int y,
        double[][] matrix,
        MarvinImage imageIn,
        MarvinImage imageOut
    ){

        int nx,ny;
        double resultRed=0;
        double resultGreen=0;
        double resultBlue=0;

        int xC=matrix[0].length/2;
        int yC=matrix.length/2;

        for(int i=0; i<matrix.length; i++){
            for(int j=0; j<matrix[0].length; j++){
                if(matrix[i][j] != 0){      
                    nx = x + (j-xC);
                    ny = y + (i-yC);

                    if(nx >= 0 && nx < imageOut.getWidth() && ny >= 0 && ny < imageOut.getHeight()){

                        resultRed   +=  (matrix[i][j]*(imageIn.getIntComponent0(nx, ny)));
                        resultGreen +=  (matrix[i][j]*(imageIn.getIntComponent1(nx, ny)));
                        resultBlue  +=  (matrix[i][j]*(imageIn.getIntComponent2(nx, ny)));
                    }


                }



            }
        }

        resultRed   = Math.abs(resultRed);
        resultGreen = Math.abs(resultGreen);
        resultBlue = Math.abs(resultBlue);

        // allow the combination of multiple appications
        resultRed   += imageOut.getIntComponent0(x,y);
        resultGreen += imageOut.getIntComponent1(x,y);
        resultBlue  += imageOut.getIntComponent2(x,y);

        resultRed   = Math.min(resultRed, 255);
        resultGreen = Math.min(resultGreen, 255);
        resultBlue  = Math.min(resultBlue, 255);

        resultRed   = Math.max(resultRed, 0);
        resultGreen = Math.max(resultGreen, 0);
        resultBlue  = Math.max(resultBlue, 0);

        imageOut.setIntColor(x, y, imageIn.getAlphaComponent(x, y), (int)resultRed, (int)resultGreen, (int)resultBlue);
    }

    public void load(){
        attributes = getAttributes();
        attributes.set("matrix", null);
    }

    public MarvinAttributesPanel getAttributesPanel(){
        if(attributesPanel == null){
            attributesPanel = new MarvinAttributesPanel();
            attributesPanel.addMatrixPanel("matrixPanel", "matrix", attributes, 3, 3);
        }
        return attributesPanel;
    }

}
收藏
评论

到目前为止,我所见过的关于Sobel运算符的最简单的解释是来自Saush的博客 ,该博客曾是一位技术爱好者,曾与Sobel会面:

在此处输入图片说明

这篇文章在(不是太多)中详细介绍了如何实现过滤器,并分享了Ruby源代码以进行演示:

require 'chunky_png'

class ChunkyPNG::Image
  def at(x,y)
    ChunkyPNG::Color.to_grayscale_bytes(self[x,y]).first
  end
end

img = ChunkyPNG::Image.from_file('engine.png')

sobel_x = [[-1,0,1],
           [-2,0,2],
           [-1,0,1]]

sobel_y = [[-1,-2,-1],
           [0,0,0],
           [1,2,1]]

edge = ChunkyPNG::Image.new(img.width, img.height, ChunkyPNG::Color::TRANSPARENT)

for x in 1..img.width-2
  for y in 1..img.height-2
    pixel_x = (sobel_x[0][0] * img.at(x-1,y-1)) + (sobel_x[0][1] * img.at(x,y-1)) + (sobel_x[0][2] * img.at(x+1,y-1)) +
              (sobel_x[1][0] * img.at(x-1,y))   + (sobel_x[1][1] * img.at(x,y))   + (sobel_x[1][2] * img.at(x+1,y)) +
              (sobel_x[2][0] * img.at(x-1,y+1)) + (sobel_x[2][1] * img.at(x,y+1)) + (sobel_x[2][2] * img.at(x+1,y+1))

    pixel_y = (sobel_y[0][0] * img.at(x-1,y-1)) + (sobel_y[0][1] * img.at(x,y-1)) + (sobel_y[0][2] * img.at(x+1,y-1)) +
              (sobel_y[1][0] * img.at(x-1,y))   + (sobel_y[1][1] * img.at(x,y))   + (sobel_y[1][2] * img.at(x+1,y)) +
              (sobel_y[2][0] * img.at(x-1,y+1)) + (sobel_y[2][1] * img.at(x,y+1)) + (sobel_y[2][2] * img.at(x+1,y+1))

    val = Math.sqrt((pixel_x * pixel_x) + (pixel_y * pixel_y)).ceil
    edge[x,y] = ChunkyPNG::Color.grayscale(val)
  end
end

edge.save('engine_edge.png')

输入/输出

收藏
评论

当然,您可以为此使用OpenCV:

import cv2
import numpy as np

img = cv2.imread(INPUT_IMAGE)
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY).astype(float)

edge_x = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
edge_y = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)    
edge = np.sqrt(edge_x**2 + edge_y**2)    # image can be normalized to 
                                         # fit into 0..255 color space
cv2.imwrite(OUTPUT_IMAGE, edge)

输入输出:

收藏
评论
新手导航
  • 社区规范
  • 提出问题
  • 进行投票
  • 个人资料
  • 优化问题
  • 回答问题

关于我们

常见问题

内容许可

联系我们

@2020 AskGo
京ICP备20001863号