ConfusionMatrix中的错误数据和参考因子必须具有相同数量的水平
classification
machine-learning
r
4
0

我已经用R插入符号训练了树模型。我现在正在尝试生成一个混淆矩阵,并不断出现以下错误:

confusionMatrix.default(predictionsTree,testdata $ catgeory)中的错误:数据和参考因子必须具有相同数量的级别

prob <- 0.5 #Specify class split
singleSplit <- createDataPartition(modellingData2$category, p=prob,
                                   times=1, list=FALSE)
cvControl <- trainControl(method="repeatedcv", number=10, repeats=5)
traindata <- modellingData2[singleSplit,]
testdata <- modellingData2[-singleSplit,]
treeFit <- train(traindata$category~., data=traindata,
                 trControl=cvControl, method="rpart", tuneLength=10)
predictionsTree <- predict(treeFit, testdata)
confusionMatrix(predictionsTree, testdata$catgeory)

生成混淆矩阵时发生错误。两个对象的级别相同。我不知道是什么问题。它们的结构和水平在下面给出。它们应该是相同的。任何帮助将不胜感激,因为它使我崩溃了!

> str(predictionsTree)
 Factor w/ 30 levels "16-Merchant Service Charge",..: 28 22 22 22 22 6 6 6 6 6 ...
> str(testdata$category)
 Factor w/ 30 levels "16-Merchant Service Charge",..: 30 30 7 7 7 7 7 30 7 7 ...

> levels(predictionsTree)
 [1] "16-Merchant Service Charge"   "17-Unpaid Cheque Fee"         "18-Gov. Stamp Duty"           "Misc"                         "26-Standard Transfer Charge" 
 [6] "29-Bank Giro Credit"          "3-Cheques Debit"              "32-Standing Order - Debit"    "33-Inter Branch Payment"      "34-International"            
[11] "35-Point of Sale"             "39-Direct Debits Received"    "4-Notified Bank Fees"         "40-Cash Lodged"               "42-International Receipts"   
[16] "46-Direct Debits Paid"        "56-Credit Card Receipts"      "57-Inter Branch"              "58-Unpaid Items"              "59-Inter Company Transfers"  
[21] "6-Notified Interest Credited" "61-Domestic"                  "64-Charge Refund"             "66-Inter Company Transfers"   "67-Suppliers"                
[26] "68-Payroll"                   "69-Domestic"                  "73-Credit Card Payments"      "82-CHAPS Fee"                 "Uncategorised"   

> levels(testdata$category)
 [1] "16-Merchant Service Charge"   "17-Unpaid Cheque Fee"         "18-Gov. Stamp Duty"           "Misc"                         "26-Standard Transfer Charge" 
 [6] "29-Bank Giro Credit"          "3-Cheques Debit"              "32-Standing Order - Debit"    "33-Inter Branch Payment"      "34-International"            
[11] "35-Point of Sale"             "39-Direct Debits Received"    "4-Notified Bank Fees"         "40-Cash Lodged"               "42-International Receipts"   
[16] "46-Direct Debits Paid"        "56-Credit Card Receipts"      "57-Inter Branch"              "58-Unpaid Items"              "59-Inter Company Transfers"  
[21] "6-Notified Interest Credited" "61-Domestic"                  "64-Charge Refund"             "66-Inter Company Transfers"   "67-Suppliers"                
[26] "68-Payroll"                   "69-Domestic"                  "73-Credit Card Payments"      "82-CHAPS Fee"                 "Uncategorised"       
参考资料:
Stack Overflow
收藏
评论
共 4 个回答
高赞 时间 活跃

将它们更改为数据框,然后在confusionMatrix函数中使用它们:

pridicted <- factor(predict(treeFit, testdata))
real <- factor(testdata$catgeory)

my_data1 <- data.frame(data = pridicted, type = "prediction")
my_data2 <- data.frame(data = real, type = "real")
my_data3 <- rbind(my_data1,my_data2)

# Check if the levels are identical
identical(levels(my_data3[my_data3$type == "prediction",1]) , levels(my_data3[my_data3$type == "real",1]))

confusionMatrix(my_data3[my_data3$type == "prediction",1], my_data3[my_data3$type == "real",1],  dnn = c("Prediction", "Reference"))
收藏
评论

也许您的模型无法预测某个因素。使用table()函数而不是confusionMatrix()来查看是否存在问题。

收藏
评论

尝试为na.action选项指定na.pass

predictionsTree <- predict(treeFit, testdata,na.action = na.pass)
收藏
评论

尝试使用:

confusionMatrix(table(Argument 1, Argument 2)) 

那对我有用。

收藏
评论
新手导航
  • 社区规范
  • 提出问题
  • 进行投票
  • 个人资料
  • 优化问题
  • 回答问题

关于我们

常见问题

内容许可

联系我们

@2020 AskGo
京ICP备20001863号