如何在Tensorflow中设置分层学习率?
deep-learning
python
tensorflow
5
0

我想知道是否有一种方法可以对Caffe中的不同层使用不同的学习率。我正在尝试修改预训练的模型,并将其用于其他任务。我想要的是加快对新添加的层的培训,并使受过培训的层保持较低的学习率,以防止它们变形。例如,我有一个5转换层的预训练模型。现在,我添加了一个新的转换层并对其进行了微调。前5层的学习率为0.00001,后5层的学习率为0.001。任何想法如何实现这一目标?

参考资料:
Stack Overflow
收藏
评论
共 4 个回答
高赞 时间 活跃

Tensorflow 1.7引入了tf.custom_gradient ,它大大简化了设置学习速率乘数的方式,该方式现已与任何优化器(包括那些累积梯度统计信息的优化器)兼容。例如,

import tensorflow as tf

def lr_mult(alpha):
  @tf.custom_gradient
  def _lr_mult(x):
    def grad(dy):
      return dy * alpha * tf.ones_like(x)
    return x, grad
  return _lr_mult

x0 = tf.Variable(1.)
x1 = tf.Variable(1.)
loss = tf.square(x0) + tf.square(lr_mult(0.1)(x1))

step = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss)

sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
tf.local_variables_initializer().run()

for _ in range(5):
  sess.run([step])
  print(sess.run([x0, x1, loss]))
收藏
评论

收集每个变量的学习率乘数,例如:

self.lr_multipliers[var.op.name] = lr_mult

然后在应用渐变之前应用它们,例如:

def _train_op(self):
  tf.scalar_summary('learning_rate', self._lr_placeholder)
  opt = tf.train.GradientDescentOptimizer(self._lr_placeholder)
  grads_and_vars = opt.compute_gradients(self._loss)
  grads_and_vars_mult = []
  for grad, var in grads_and_vars:
    grad *= self._network.lr_multipliers[var.op.name]
    grads_and_vars_mult.append((grad, var))
    tf.histogram_summary('variables/' + var.op.name, var)
    tf.histogram_summary('gradients/' + var.op.name, grad)
  return opt.apply_gradients(grads_and_vars_mult)

您可以在此处找到整个示例。

收藏
评论

使用2个优化器可以很容易地实现它:

var_list1 = [variables from first 5 layers]
var_list2 = [the rest of variables]
train_op1 = GradientDescentOptimizer(0.00001).minimize(loss, var_list=var_list1)
train_op2 = GradientDescentOptimizer(0.0001).minimize(loss, var_list=var_list2)
train_op = tf.group(train_op1, train_op2)

此实现的一个缺点是,它在优化器内部两次计算tf.gradients(。),因此就执行速度而言可能不是最佳的。可以通过显式调用tf.gradients(。),将列表分成2个并将相应的梯度传递给两个优化器来缓解这种情况。

相关问题: 在优化器中保持变量不变

编辑:添加了更有效但更长的实现:

var_list1 = [variables from first 5 layers]
var_list2 = [the rest of variables]
opt1 = tf.train.GradientDescentOptimizer(0.00001)
opt2 = tf.train.GradientDescentOptimizer(0.0001)
grads = tf.gradients(loss, var_list1 + var_list2)
grads1 = grads[:len(var_list1)]
grads2 = grads[len(var_list1):]
tran_op1 = opt1.apply_gradients(zip(grads1, var_list1))
train_op2 = opt2.apply_gradients(zip(grads2, var_list2))
train_op = tf.group(train_op1, train_op2)

您可以使用tf.trainable_variables()获取所有训练变量并决定从中选择。不同之处在于,在第一个实现中, tf.gradients(.)在优化器中被两次调用。这可能会导致执行一些冗余操作(例如,第一层的渐变可以将某些计算重新用于后续层的渐变)。

收藏
评论

1月22日更新 :以下食谱对GradientDescentOptimizer来说只是一个好主意,其他保持运行平均值的优化程序将在参数更新之前应用学习率,因此以下食谱不会影响方程式的这一部分

除了拉法尔的方法,你可以使用compute_gradientsapply_gradients界面的Optimizer 。例如,这是一个玩具网络,其中我将第二个参数的学习率提高了2倍

x = tf.Variable(tf.ones([]))
y = tf.Variable(tf.zeros([]))
loss = tf.square(x-y)
global_step = tf.Variable(0, name="global_step", trainable=False)

opt = tf.GradientDescentOptimizer(learning_rate=0.1)
grads_and_vars = opt.compute_gradients(loss, [x, y])
ygrad, _ = grads_and_vars[1]
train_op = opt.apply_gradients([grads_and_vars[0], (ygrad*2, y)], global_step=global_step)

init_op = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init_op)
for i in range(5):
  sess.run([train_op, loss, global_step])
  print sess.run([x, y])

你应该看到

[0.80000001, 0.40000001]
[0.72000003, 0.56]
[0.68800002, 0.62400001]
[0.67520005, 0.64960003]
[0.67008007, 0.65984005]
收藏
评论
新手导航
  • 社区规范
  • 提出问题
  • 进行投票
  • 个人资料
  • 优化问题
  • 回答问题

关于我们

常见问题

内容许可

联系我们

@2020 AskGo
京ICP备20001863号