执行和测试斯坦福核心nlp示例
java
nlp
stanford-nlp
7
0

我下载了斯坦福核心nlp软件包并尝试在我的计算机上对其进行测试。

使用命令: java -cp "*" -mx1g edu.stanford.nlp.sentiment.SentimentPipeline -file input.txt

我得到positivenegative情绪结果。 input.txt包含要测试的句子。

在更多命令上: java -cp stanford-corenlp-3.3.0.jar;stanford-corenlp-3.3.0-models.jar;xom.jar;joda-time.jar -Xmx600m edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,lemma,parse -file input.txt会产生以下几行:

H:\Drive E\Stanford\stanfor-corenlp-full-2013~>java -cp stanford-corenlp-3.3.0.j
ar;stanford-corenlp-3.3.0-models.jar;xom.jar;joda-time.jar -Xmx600m edu.stanford
.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,lemma,parse -file
input.txt
Adding annotator tokenize
Adding annotator ssplit
Adding annotator pos
Reading POS tagger model from edu/stanford/nlp/models/pos-tagger/english-left3wo
rds/english-left3words-distsim.tagger ... done [36.6 sec].
Adding annotator lemma
Adding annotator parse
Loading parser from serialized file edu/stanford/nlp/models/lexparser/englishPCF
G.ser.gz ... done [13.7 sec].

Ready to process: 1 files, skipped 0, total 1
Processing file H:\Drive E\Stanford\stanfor-corenlp-full-2013~\input.txt ... wri
ting to H:\Drive E\Stanford\stanfor-corenlp-full-2013~\input.txt.xml {
  Annotating file H:\Drive E\Stanford\stanfor-corenlp-full-2013~\input.txt [13.6
81 seconds]
} [20.280 seconds]
Processed 1 documents
Skipped 0 documents, error annotating 0 documents
Annotation pipeline timing information:
PTBTokenizerAnnotator: 0.4 sec.
WordsToSentencesAnnotator: 0.0 sec.
POSTaggerAnnotator: 1.8 sec.
MorphaAnnotator: 2.2 sec.
ParserAnnotator: 9.1 sec.
TOTAL: 13.6 sec. for 10 tokens at 0.7 tokens/sec.
Pipeline setup: 58.2 sec.
Total time for StanfordCoreNLP pipeline: 79.6 sec.

H:\Drive E\Stanford\stanfor-corenlp-full-2013~>

可以理解。没有提供结果。

我在以下位置得到了一个示例: 斯坦福核心nlp java输出

import java.io.*;
import java.util.*;

import edu.stanford.nlp.io.*;
import edu.stanford.nlp.ling.*;
import edu.stanford.nlp.pipeline.*;
import edu.stanford.nlp.trees.*;
import edu.stanford.nlp.util.*;

public class StanfordCoreNlpDemo {

  public static void main(String[] args) throws IOException {
    PrintWriter out;
    if (args.length > 1) {
      out = new PrintWriter(args[1]);
    } else {
      out = new PrintWriter(System.out);
    }
    PrintWriter xmlOut = null;
    if (args.length > 2) {
      xmlOut = new PrintWriter(args[2]);
    }

    StanfordCoreNLP pipeline = new StanfordCoreNLP();
    Annotation annotation;
    if (args.length > 0) {
      annotation = new Annotation(IOUtils.slurpFileNoExceptions(args[0]));
    } else {
      annotation = new Annotation("Kosgi Santosh sent an email to Stanford University. He didn't get a reply.");
    }

    pipeline.annotate(annotation);
    pipeline.prettyPrint(annotation, out);
    if (xmlOut != null) {
      pipeline.xmlPrint(annotation, xmlOut);
    }
    // An Annotation is a Map and you can get and use the various analyses individually.
    // For instance, this gets the parse tree of the first sentence in the text.
    List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class);
    if (sentences != null && sentences.size() > 0) {
      CoreMap sentence = sentences.get(0);
      Tree tree = sentence.get(TreeCoreAnnotations.TreeAnnotation.class);
      out.println();
      out.println("The first sentence parsed is:");
      tree.pennPrint(out);
    }
  }

}

试图在包含必需库的netbeans中执行它。但是它总是卡在它们之间或Exception in thread “main” java.lang.OutOfMemoryError: Java heap space给出异常Exception in thread “main” java.lang.OutOfMemoryError: Java heap space

您在property/run/VM box设置要分配的内存

知道如何使用命令行在Java示例上方运行吗?

我想得到例子的情感分数

更新

输出: java -cp "*" -mx1g edu.stanford.nlp.sentiment.SentimentPipeline -file input.txt

在此处输入图片说明

输出: java -cp stanford-corenlp-3.3.0.j ar;stanford-corenlp-3.3.0-models.jar;xom.jar;joda-time.jar -Xmx600m edu.stanford .nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,lemma,parse -file input.txt

超出上述命令

参考资料:
Stack Overflow
收藏
评论
共 4 个回答
高赞 时间 活跃

您需要将“情感”注释器添加到注释器列表中:

-annotators tokenize,ssplit,pos,lemma,parse,sentiment

这将为XML中的每个句子节点添加一个“情感”属性。

收藏
评论

这对我来说很好-

Maven依赖关系:

        <dependency>
            <groupId>edu.stanford.nlp</groupId>
            <artifactId>stanford-corenlp</artifactId>
            <version>3.5.2</version>
            <classifier>models</classifier>
        </dependency>
        <dependency>
            <groupId>edu.stanford.nlp</groupId>
            <artifactId>stanford-corenlp</artifactId>
            <version>3.5.2</version>
        </dependency>
        <dependency>
            <groupId>edu.stanford.nlp</groupId>
            <artifactId>stanford-parser</artifactId>
            <version>3.5.2</version>
        </dependency>

Java代码:

public static void main(String[] args) throws IOException {
        String text = "This World is an amazing place";
        Properties props = new Properties();
        props.setProperty("annotators", "tokenize, ssplit, pos, lemma, parse, sentiment");
        StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

        Annotation annotation = pipeline.process(text);
        List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class);
        for (CoreMap sentence : sentences) {
            String sentiment = sentence.get(SentimentCoreAnnotations.SentimentClass.class);
            System.out.println(sentiment + "\t" + sentence);
        }
    }

结果:

非常积极的世界是一个了不起的地方

收藏
评论

您可以在代码中执行以下操作:

String text = "I am feeling very sad and frustrated.";
Properties props = new Properties();
props.setProperty("annotators", "tokenize, ssplit, pos, lemma, parse, sentiment");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
<...>
Annotation annotation = pipeline.process(text);
List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class);
for (CoreMap sentence : sentences) {
  String sentiment = sentence.get(SentimentCoreAnnotations.SentimentClass.class);
  System.out.println(sentiment + "\t" + sentence);
}

它将打印句子的情感和句子本身,例如:“我感到非常难过和沮丧”:

Negative    I am feeling very sad and frustrated.
收藏
评论

根据此处的示例您需要运行情感分析。

java -cp "*" -mx5g edu.stanford.nlp.sentiment.SentimentPipeline -file input.txt

显然,这是一项耗费内存的操作,它可能仅用1 GB就无法完成。然后,您可以使用“评估工具”

java -cp "*" edu.stanford.nlp.sentiment.Evaluate edu/stanford/nlp/models/sentiment/sentiment.ser.gz input.txt
收藏
评论
新手导航
  • 社区规范
  • 提出问题
  • 进行投票
  • 个人资料
  • 优化问题
  • 回答问题

关于我们

常见问题

内容许可

联系我们

@2020 AskGo
京ICP备20001863号